In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra B ( H ) {\displaystyle {\mathcal {B}}(H)} of bounded linear operators on some Hilbert space H . {\displaystyle H.} This article describes the spectral theory of closed normal subalgebras of B ( H ) {\displaystyle {\mathcal {B}}(H)} . A subalgebra A {\displaystyle A} of B ( H ) {\displaystyle {\mathcal {B}}(H)} is called normal if it is commutative and closed under the {\displaystyle \ast } operation: for all x , y A {\displaystyle x,y\in A} , we have x A {\displaystyle x^{\ast }\in A} and that x y = y x {\displaystyle xy=yx} .

Resolution of identity

Throughout, H {\displaystyle H} is a fixed Hilbert space.

A projection-valued measure on a measurable space ( X , Ω ) , {\displaystyle (X,\Omega ),} where Ω {\displaystyle \Omega } is a σ-algebra of subsets of X , {\displaystyle X,} is a mapping π : Ω B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} such that for all ω Ω , {\displaystyle \omega \in \Omega ,} π ( ω ) {\displaystyle \pi (\omega )} is a self-adjoint projection on H {\displaystyle H} (that is, π ( ω ) {\displaystyle \pi (\omega )} is a bounded linear operator π ( ω ) : H H {\displaystyle \pi (\omega ):H\to H} that satisfies π ( ω ) = π ( ω ) {\displaystyle \pi (\omega )=\pi (\omega )^{*}} and π ( ω ) π ( ω ) = π ( ω ) {\displaystyle \pi (\omega )\circ \pi (\omega )=\pi (\omega )} ) such that π ( X ) = Id H {\displaystyle \pi (X)=\operatorname {Id} _{H}\quad } (where Id H {\displaystyle \operatorname {Id} _{H}} is the identity operator of H {\displaystyle H} ) and for every x , y H , {\displaystyle x,y\in H,} the function Ω C {\displaystyle \Omega \to \mathbb {C} } defined by ω π ( ω ) x , y {\displaystyle \omega \mapsto \langle \pi (\omega )x,y\rangle } is a complex measure on M {\displaystyle M} (that is, a complex-valued countably additive function).

A resolution of identity on a measurable space ( X , Ω ) {\displaystyle (X,\Omega )} is a function π : Ω B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} such that for every ω 1 , ω 2 Ω {\displaystyle \omega _{1},\omega _{2}\in \Omega } :

  1. π ( ) = 0 {\displaystyle \pi (\varnothing )=0} ;
  2. π ( X ) = Id H {\displaystyle \pi (X)=\operatorname {Id} _{H}} ;
  3. for every ω Ω , {\displaystyle \omega \in \Omega ,} π ( ω ) {\displaystyle \pi (\omega )} is a self-adjoint projection on H {\displaystyle H} ;
  4. for every x , y H , {\displaystyle x,y\in H,} the map π x , y : Ω C {\displaystyle \pi _{x,y}:\Omega \to \mathbb {C} } defined by π x , y ( ω ) = π ( ω ) x , y {\displaystyle \pi _{x,y}(\omega )=\langle \pi (\omega )x,y\rangle } is a complex measure on Ω {\displaystyle \Omega } ;
  5. π ( ω 1 ω 2 ) = π ( ω 1 ) π ( ω 2 ) {\displaystyle \pi \left(\omega _{1}\cap \omega _{2}\right)=\pi \left(\omega _{1}\right)\circ \pi \left(\omega _{2}\right)} ;
  6. if ω 1 ω 2 = {\displaystyle \omega _{1}\cap \omega _{2}=\varnothing } then π ( ω 1 ω 2 ) = π ( ω 1 ) π ( ω 2 ) {\displaystyle \pi \left(\omega _{1}\cup \omega _{2}\right)=\pi \left(\omega _{1}\right) \pi \left(\omega _{2}\right)} ;

If Ω {\displaystyle \Omega } is the σ {\displaystyle \sigma } -algebra of all Borels sets on a Hausdorff locally compact (or compact) space, then the following additional requirement is added:

  1. for every x , y H , {\displaystyle x,y\in H,} the map π x , y : Ω C {\displaystyle \pi _{x,y}:\Omega \to \mathbb {C} } is a regular Borel measure (this is automatically satisfied on compact metric spaces).

Conditions 2, 3, and 4 imply that π {\displaystyle \pi } is a projection-valued measure.

Properties

Throughout, let π {\displaystyle \pi } be a resolution of identity. For all x H , {\displaystyle x\in H,} π x , x : Ω C {\displaystyle \pi _{x,x}:\Omega \to \mathbb {C} } is a positive measure on Ω {\displaystyle \Omega } with total variation π x , x = π x , x ( X ) = x 2 {\displaystyle \left\|\pi _{x,x}\right\|=\pi _{x,x}(X)=\|x\|^{2}} and that satisfies π x , x ( ω ) = π ( ω ) x , x = π ( ω ) x 2 {\displaystyle \pi _{x,x}(\omega )=\langle \pi (\omega )x,x\rangle =\|\pi (\omega )x\|^{2}} for all ω Ω . {\displaystyle \omega \in \Omega .}

For every ω 1 , ω 2 Ω {\displaystyle \omega _{1},\omega _{2}\in \Omega } :

  • π ( ω 1 ) π ( ω 2 ) = π ( ω 2 ) π ( ω 1 ) {\displaystyle \pi \left(\omega _{1}\right)\pi \left(\omega _{2}\right)=\pi \left(\omega _{2}\right)\pi \left(\omega _{1}\right)} (since both are equal to π ( ω 1 ω 2 ) {\displaystyle \pi \left(\omega _{1}\cap \omega _{2}\right)} ).
  • If ω 1 ω 2 = {\displaystyle \omega _{1}\cap \omega _{2}=\varnothing } then the ranges of the maps π ( ω 1 ) {\displaystyle \pi \left(\omega _{1}\right)} and π ( ω 2 ) {\displaystyle \pi \left(\omega _{2}\right)} are orthogonal to each other and π ( ω 1 ) π ( ω 2 ) = 0 = π ( ω 2 ) π ( ω 1 ) . {\displaystyle \pi \left(\omega _{1}\right)\pi \left(\omega _{2}\right)=0=\pi \left(\omega _{2}\right)\pi \left(\omega _{1}\right).}
  • π : Ω B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} is finitely additive.
  • If ω 1 , ω 2 , {\displaystyle \omega _{1},\omega _{2},\ldots } are pairwise disjoint elements of Ω {\displaystyle \Omega } whose union is ω {\displaystyle \omega } and if π ( ω i ) = 0 {\displaystyle \pi \left(\omega _{i}\right)=0} for all i {\displaystyle i} then π ( ω ) = 0. {\displaystyle \pi (\omega )=0.}
    • However, π : Ω B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} is countably additive only in trivial situations as is now described: suppose that ω 1 , ω 2 , {\displaystyle \omega _{1},\omega _{2},\ldots } are pairwise disjoint elements of Ω {\displaystyle \Omega } whose union is ω {\displaystyle \omega } and that the partial sums i = 1 n π ( ω i ) {\displaystyle \sum _{i=1}^{n}\pi \left(\omega _{i}\right)} converge to π ( ω ) {\displaystyle \pi (\omega )} in B ( H ) {\displaystyle {\mathcal {B}}(H)} (with its norm topology) as n {\displaystyle n\to \infty } ; then since the norm of any projection is either 0 {\displaystyle 0} or 1 , {\displaystyle \geq 1,} the partial sums cannot form a Cauchy sequence unless all but finitely many of the π ( ω i ) {\displaystyle \pi \left(\omega _{i}\right)} are 0. {\displaystyle 0.}
  • For any fixed x H , {\displaystyle x\in H,} the map π x : Ω H {\displaystyle \pi _{x}:\Omega \to H} defined by π x ( ω ) := π ( ω ) x {\displaystyle \pi _{x}(\omega ):=\pi (\omega )x} is a countably additive H {\displaystyle H} -valued measure on Ω . {\displaystyle \Omega .}
    • Here countably additive means that whenever ω 1 , ω 2 , {\displaystyle \omega _{1},\omega _{2},\ldots } are pairwise disjoint elements of Ω {\displaystyle \Omega } whose union is ω , {\displaystyle \omega ,} then the partial sums i = 1 n π ( ω i ) x {\displaystyle \sum _{i=1}^{n}\pi \left(\omega _{i}\right)x} converge to π ( ω ) x {\displaystyle \pi (\omega )x} in H . {\displaystyle H.} Said more succinctly, i = 1 π ( ω i ) x = π ( ω ) x . {\displaystyle \sum _{i=1}^{\infty }\pi \left(\omega _{i}\right)x=\pi (\omega )x.}
    • In other words, for every pairwise disjoint family of elements ( ω i ) i = 1 Ω {\displaystyle \left(\omega _{i}\right)_{i=1}^{\infty }\subseteq \Omega } whose union is ω Ω {\displaystyle \omega _{\infty }\in \Omega } , then i = 1 n π ( ω i ) = π ( i = 1 n ω i ) {\displaystyle \sum _{i=1}^{n}\pi \left(\omega _{i}\right)=\pi \left(\bigcup _{i=1}^{n}\omega _{i}\right)} (by finite additivity of π {\displaystyle \pi } ) converges to π ( ω ) {\displaystyle \pi \left(\omega _{\infty }\right)} in the strong operator topology on B ( H ) {\displaystyle {\mathcal {B}}(H)} : for every x H {\displaystyle x\in H} , the sequence of elements i = 1 n π ( ω i ) x {\displaystyle \sum _{i=1}^{n}\pi \left(\omega _{i}\right)x} converges to π ( ω ) x {\displaystyle \pi \left(\omega _{\infty }\right)x} in H {\displaystyle H} (with respect to the norm topology).

L(π) - space of essentially bounded function

The π : Ω B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} be a resolution of identity on ( X , Ω ) . {\displaystyle (X,\Omega ).}

Essentially bounded functions

Suppose f : X C {\displaystyle f:X\to \mathbb {C} } is a complex-valued Ω {\displaystyle \Omega } -measurable function. There exists a unique largest open subset V f {\displaystyle V_{f}} of C {\displaystyle \mathbb {C} } (ordered under subset inclusion) such that π ( f 1 ( V f ) ) = 0. {\displaystyle \pi \left(f^{-1}\left(V_{f}\right)\right)=0.} To see why, let D 1 , D 2 , {\displaystyle D_{1},D_{2},\ldots } be a basis for C {\displaystyle \mathbb {C} } 's topology consisting of open disks and suppose that D i 1 , D i 2 , {\displaystyle D_{i_{1}},D_{i_{2}},\ldots } is the subsequence (possibly finite) consisting of those sets such that π ( f 1 ( D i k ) ) = 0 {\displaystyle \pi \left(f^{-1}\left(D_{i_{k}}\right)\right)=0} ; then D i 1 D i 2 = V f . {\displaystyle D_{i_{1}}\cup D_{i_{2}}\cup \cdots =V_{f}.} Note that, in particular, if D {\displaystyle D} is an open subset of C {\displaystyle \mathbb {C} } such that D Im f = {\displaystyle D\cap \operatorname {Im} f=\varnothing } then π ( f 1 ( D ) ) = π ( ) = 0 {\displaystyle \pi \left(f^{-1}(D)\right)=\pi (\varnothing )=0} so that D V f {\displaystyle D\subseteq V_{f}} (although there are other ways in which π ( f 1 ( D ) ) {\displaystyle \pi \left(f^{-1}(D)\right)} may equal 0). Indeed, C cl ( Im f ) V f . {\displaystyle \mathbb {C} \setminus \operatorname {cl} (\operatorname {Im} f)\subseteq V_{f}.}

The essential range of f {\displaystyle f} is defined to be the complement of V f . {\displaystyle V_{f}.} It is the smallest closed subset of C {\displaystyle \mathbb {C} } that contains f ( x ) {\displaystyle f(x)} for almost all x X {\displaystyle x\in X} (that is, for all x X {\displaystyle x\in X} except for those in some set ω Ω {\displaystyle \omega \in \Omega } such that π ( ω ) = 0 {\displaystyle \pi (\omega )=0} ). The essential range is a closed subset of C {\displaystyle \mathbb {C} } so that if it is also a bounded subset of C {\displaystyle \mathbb {C} } then it is compact.

The function f {\displaystyle f} is essentially bounded if its essential range is bounded, in which case define its essential supremum, denoted by f , {\displaystyle \|f\|^{\infty },} to be the supremum of all | λ | {\displaystyle |\lambda |} as λ {\displaystyle \lambda } ranges over the essential range of f . {\displaystyle f.}

Space of essentially bounded functions

Let B ( X , Ω ) {\displaystyle {\mathcal {B}}(X,\Omega )} be the vector space of all bounded complex-valued Ω {\displaystyle \Omega } -measurable functions f : X C , {\displaystyle f:X\to \mathbb {C} ,} which becomes a Banach algebra when normed by f := sup x X | f ( x ) | . {\displaystyle \|f\|_{\infty }:=\sup _{x\in X}|f(x)|.} The function {\displaystyle \|\,\cdot \,\|^{\infty }} is a seminorm on B ( X , Ω ) , {\displaystyle {\mathcal {B}}(X,\Omega ),} but not necessarily a norm. The kernel of this seminorm, N := { f B ( X , Ω ) : f = 0 } , {\displaystyle N^{\infty }:=\left\{f\in {\mathcal {B}}(X,\Omega ):\|f\|^{\infty }=0\right\},} is a vector subspace of B ( X , Ω ) {\displaystyle {\mathcal {B}}(X,\Omega )} that is a closed two-sided ideal of the Banach algebra ( B ( X , Ω ) , ) . {\displaystyle \left({\mathcal {B}}(X,\Omega ),\|\cdot \|_{\infty }\right).} Hence the quotient of B ( X , Ω ) {\displaystyle {\mathcal {B}}(X,\Omega )} by N {\displaystyle N^{\infty }} is also a Banach algebra, denoted by L ( π ) := B ( X , Ω ) / N {\displaystyle L^{\infty }(\pi ):={\mathcal {B}}(X,\Omega )/N^{\infty }} where the norm of any element f N L ( π ) {\displaystyle f N^{\infty }\in L^{\infty }(\pi )} is equal to f {\displaystyle \|f\|^{\infty }} (since if f N = g N {\displaystyle f N^{\infty }=g N^{\infty }} then f = g {\displaystyle \|f\|^{\infty }=\|g\|^{\infty }} ) and this norm makes L ( π ) {\displaystyle L^{\infty }(\pi )} into a Banach algebra. The spectrum of f N {\displaystyle f N^{\infty }} in L ( π ) {\displaystyle L^{\infty }(\pi )} is the essential range of f . {\displaystyle f.} This article will follow the usual practice of writing f {\displaystyle f} rather than f N {\displaystyle f N^{\infty }} to represent elements of L ( π ) . {\displaystyle L^{\infty }(\pi ).}

Spectral theorem

The maximal ideal space of a Banach algebra A {\displaystyle A} is the set of all complex homomorphisms A C , {\displaystyle A\to \mathbb {C} ,} which we'll denote by σ A . {\displaystyle \sigma _{A}.} For every T {\displaystyle T} in A , {\displaystyle A,} the Gelfand transform of T {\displaystyle T} is the map G ( T ) : σ A C {\displaystyle G(T):\sigma _{A}\to \mathbb {C} } defined by G ( T ) ( h ) := h ( T ) . {\displaystyle G(T)(h):=h(T).} σ A {\displaystyle \sigma _{A}} is given the weakest topology making every G ( T ) : σ A C {\displaystyle G(T):\sigma _{A}\to \mathbb {C} } continuous. With this topology, σ A {\displaystyle \sigma _{A}} is a compact Hausdorff space and every T {\displaystyle T} in A , {\displaystyle A,} G ( T ) {\displaystyle G(T)} belongs to C ( σ A ) , {\displaystyle C\left(\sigma _{A}\right),} which is the space of continuous complex-valued functions on σ A . {\displaystyle \sigma _{A}.} The range of G ( T ) {\displaystyle G(T)} is the spectrum σ ( T ) {\displaystyle \sigma (T)} and that the spectral radius is equal to max { | G ( T ) ( h ) | : h σ A } , {\displaystyle \max \left\{|G(T)(h)|:h\in \sigma _{A}\right\},} which is T . {\displaystyle \leq \|T\|.}

The above result can be specialized to a single normal bounded operator.

See also

  • Projection-valued measure – Mathematical operator-value measure of interest in quantum mechanics and functional analysis
  • Spectral theory of compact operators
  • Spectral theorem – Result about when a matrix can be diagonalized

References

  • Robertson, A. P. (1973). Topological vector spaces. Cambridge England: University Press. ISBN 0-521-29882-2. OCLC 589250.
  • Robertson, Alex P.; Robertson, Wendy J. (1980). Topological Vector Spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge England: Cambridge University Press. ISBN 978-0-521-29882-7. OCLC 589250.
  • Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.

(PDF) Aspects of the spectral theory for unbounded normal operators

(PDF) A Spectral Theory for Rectangular Matrices

Spectral shift function in von Neumann algebras Spectral shift

(PDF) Coalgebras and Spectral Theory in One and Several Parameters

Spectral Theory PDF Graph Theory Linear Algebra